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A well-known technique for metering a multiphase flow is to use small probes 
that utilize some measurement principle to detect the presence of different phases 
surrounding their tips. In almost all cases of relevance to the oil industry, the flow 
around such local probes is inviscid and driven by surface tension, with negligible 
gravitational effects. In order to study the features of the flow around a local probe 
when it meets a droplet, we analyse a model problem: the interaction of an infinite, 
initially straight, interface between two inviscid fluids, advected in an initially uniform 
flow towards a semi-infinite thin flat plate oriented at 90" to the interface. This has 
enabled us to gain some insight into the factors that control the motion of a contact 
line over a solid surface, for a range of physical parameter values. 

The potential flows in the two fluids are coupled nonlinearly at the interface, where 
surface tension is balanced by a pressure difference. In addition, a dynamic contact 
angle boundary condition is imposed at the three-phase contact line, which moves 
along the plate. In order to determine how the interface deforms in such a flow, we 
consider the small- and large-time asymptotic limits of the solution. The small-time 
and linearized large-time problems are solved analytically, using Mellin transforms, 
whilst the general large-time problem is solved numerically, using a boundary integral 
method. 

The form of the dynamic contact angle as a function of contact line velocity is 
the most important factor in determining how an interface deforms as it meets and 
moves over the plate. Depending on this, the three-phase contact line may, at one 
extreme, hang up on the leading edge of the plate or, at the other extreme, move 
rapidly along the surface of the plate. At large times, the solution asymptotes to an 
interface configuration where the contact line moves at the far-field velocity. 

1. Introduction 
One well-known class of techniques used to meter multiphase flows is based on the 

use of local probes. These probes must be small (typically hundreds of microns in 
diameter), so that they disturb the flow as little as possible, and use some measurement 
principle that distinguishes between the flowing phases. A time series can then be 
averaged to produce a measurement of the time-averaged, local phase fraction. Two 
common measurement principles are : 

(i) Electromagnetic interaction with the flow. For example laser light can be shone 
down an optical fibre and the intensity of the reflected light measured (see Sekoguchi 
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et al. 1985). This technique makes use of the different refractive indices of the flowing 
fluids. 

(ii) Thermal interaction with the flow. For example a small wire can be heated 
by an electrical current, and its electrical resistivity, which varies with temperature, 
measured (see Serizawa, Kataoka & Michiyoshi 1974). This is known as a hot-film 
probe, and makes use of the different thermal properties of the flowing fluids. 
Ideally, local probes would be used to measure the local velocity of the flow, as well as 
the local phase fraction. For the optical probes described by Sekoguchi et al. (1985), 
this was achieved by using the Doppler effect as a moving fluid/fluid interface 
approaches the probe. Hot-film probes can also be used, since the rate of cooling 
of the wire increases with fluid velocity (see King 1914). In addition, a time of 
flight measurement can be made if two local probes, using almost any measurement 
principle, are located so that a fluid/fluid interface meets one before the other 
(see Moujaes 1990). From this an interfacial velocity can be deduced. 

In order to deduce the global, time-averaged phase fractions and the individual 
phase flow rates, a number of local measurements must be made across the pipe or 
annulus in which the multiphase mixture is flowing. These can then be integrated 
across the flow to yield the required global quantities. The signals from any local 
probe must be interpretable, accurate, and robust. We therefore need to know what 
happens when a fluid/fluid interface interacts with a solid local probe, and how 
this depends on the properties of the fluids and the surface of the probe. This is 
the vital theoretical background that underpins the interpretation of any local probe 
measurement, and is the subject of the present paper. 

We begin in $2 by examining the size of the four forces (inertia, gravity, viscosity, 
surface tension) that act when an interface moves past a local probe. We conclude 
that inertia and surface tension forces usually dominate, and move on, in $3, to study 
a model inviscid irrotational flow: the advection of an interface past a semi-infinite 
flat plate. We study the large- and small-time solutions of this model problem, using 
both asymptotic and numerical methods, in $4 and $5, and make some observations 
about the possible behaviour of the solution for all times in $6. We consider how the 
model problem can be related indirectly to the deformation of an interface interacting 
with a local probe in $7, and conclude in $8. 

2. Typical dimensions, fluid properties and dimensionless groups 
The important oilfield activity known as production logging involves lowering a 

string of various tools into a producing oil well and measuring flow rates and phase 
fractions in a flow of oil and water. Typical values for fluid density, p, density 
difference, Ap, fluid viscosity, p, surface tension, c, fluid velocity, u, and probe 
diameter, d,  are given in table 1. The lower value for the surface tension given in 
table 1 is smaller than values often quoted in the literature, but our measurements 
have shown that this is a good estimate for crude oil and saline water. 

The four forces that act when an oil/water interface passes a local probe are inertia, 
gravity, viscosity and surface tension. We can estimate the relative magnitude of these 
forces by calculating the Reynolds, capillary, Weber, Froude and Bond numbers (Re, 
Ca, We, Fr and Bo). These dimensionless groups are defined in table 2, where ranges 
of possible values are also shown. 

We find that, in general, Re >> 1, Ca << 1, Fr >> 1, Bo << 1, whilst the Weber 
number, We, can be moderately small or large, with size mainly dependent on the 
value of the fluid velocity. From this we conclude that viscosity and gravity are 
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Liquid density p 800 - 1000 kgm-3 
Density difference Ap 0 - 200 kgrnp3 
Liquid viscosity p kgm-ls-' 
Surface tension cr 0.05 - 0.005 Nm-' 

Velocity U 0.1 - 2 ms-I 
Probe diameter d 200 pm - 1.2 mm 

TABLE 1. Typical dimensions and fluid properties for production logging. 

Re pvdlp 16-2400 

We pu2d/a  0.032 - 960 
Fr pv2/Apgd 3.3 - co 
Bo Apgd2/a  0 -  0.6 

Ca pU/a 0.002 - 0.4 

TABLE 2. Typical values of dimensionless groups for production logging. 

generally negligible compared to inertia and surface tension. Of course, viscosity 
will always act in the boundary layer on the surface of the probe, but we shall not 
consider the effect of this here. 

To illustrate how these dimensionless groups appear in the governing equations 
and boundary conditions, consider the typical dimensionless momentum equation 

and the typical normal stress interfacial boundary condition 

where an overbar indicates a dimensionless variable, p* = p - pBgz is the reduced 
pressure, z measures distance in the direction of gravity and the subscripts A and 
B indicate the fluid properties on either side of an interface. Velocity, length, time 
and pressure have been made dimensionless using v, d ,  d / v  and pv2 respectively. 
The dimensionless radius of curvature of the interface is R, the unit normal to the 
interface is n, the unit vector in the direction of gravity is k, the dimensionless normal 
viscous stress is n . e * n ,  and the square brackets indicate the difference across the 
interface. For the sizes of dimensionless groups discussed above, we can see that 
(2.1) reduces to the Euler momentum equation, with momentum flux balanced by the 
pressure gradient (Re >> 1, Fr >> l), whilst the normal stress boundary condition (2.2) 
has surface tension forces balanced by the pressure difference across the interface 
(GI << 1, Bo << 1). Note that the size of the Weber number, We, determines the size 
of the pressure difference needed to sustain a given curvature. 

3. A model problem 
When a local probe penetrates an interface, two processes are crucial in determining 

the shape of the interface. Firstly, as the interface becomes close to the probe a thin 
film forms between the interface and the point of closest approach. For example, 
when an interface approaches a sharp-tipped local probe a thin film forms over the 
tip. The rate at which fluid drains from this film determines how long it takes for the 
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Secondly, once the interface meets the surface of the probe, a three-phase contact line 
is formed and the interface moves to form the thermodynamically determined contact 
angle that is appropriate to the two fluids, the solid surface, and also the speed at 
which the contact line is able to move across the surface of the probe, consistent with 
the outer flow. 

The approach that we have adopted is to try to study each of these processes 
separately and in detail, using simplified model problems. The main simplifications 
used have been in the geometry of the solid surface and the symmetry of the interfacial 
deformation. We are currently studying the process of film drainage at the point of 
contact with the probe by analysing the motion of a fluid/fluid interface past a fixed 
solid sphere. This will not be examined here. 

The subject of the present paper is the motion of the interface once it has made 
contact with the surface of the probe. The model problem that we have studied is a 
fluid/fluid interface moving past a thin, semi-infinite, flat plate. Since the plate is thin, 
the interface is simply advected to meet the leading edge of the plate, so that the film 
drainage process is eliminated. The problem is two-dimensional, and we shall assume 
that the flow velocity is uniform before the interface meets the plate. Also, on the 
basis of our analysis of the relative importance of the various forces given in 92, we 
shall neglect gravity and assume that the flow is inviscid and incompressible. Note 
that we are not suggesting that this model problem is part of an asymptotic solution 
for the flow around a local probe, valid close to the contact line (although this may 
be possible in some cases). Our objectives are, for the moment, less ambitious. We 
are interested in relating the qualitative form of the solution of the model problem 
to the behaviour of interfaces on a length scale appropriate to local probes, and in 
determining how this varies with the size of the probe, the fluid properties and the 
far-field velocity, as discussed in 97. 

3.1. Governing equations 
The two-dimensional coordinate system ( x , y )  is illustrated in figure 1 ,  along with the 
configuration of the plate and fluid/fluid interface. The plate is initially surrounded 
by fluid B, which is displaced by fluid A. The position of the interface is given by 
y = Y (x,t),  where t is time. When t < 0, the interface and all of the fluid translates 
uniformly in the y-direction at velocity urn, so that Y ( x , t )  = u,t. At t = 0 the 
interface touches the leading edge of the plate and a contact line is formed. When 
t > 0, this contact line at y = y ,  ( t )  moves along the plate at velocity u, ( t ) ,  where u, 
may be zero. In addition, the contact angle, B,, as defined in figure l ( c ) ,  is a known 
function of u,. The system is symmetric about the line x = 0, which includes the plate, 
and we shall confine our attention to the domain x 2 0. A mathematical statement 
of the problem is made easier if we define two domains of fluid flow, 

D A  = { ( x , y )  : 0 < x < a,-m < y < Y ( x , t ) } ,  ( 3 . 1 ~ )  

D B = { ( x , y )  : O < x < m , Y ( x , t ) < y  <a}, ( 3 . l b )  

so that DA contains the fluid A and DB the fluid B. 
Since the fluids are inviscid and the flow is initially irrotational, the flow remains 

irrotational. We can therefore define velocity potentials, $ A  and 4 ~ ,  in DA and DB 
respectively as 

where uA and us are the velocity fields in DA and DB.  Each potential then satisfies 
U A  = v4A, U B  = v4B7 (3.2) 
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FIGURE 1. The configuration of the plate and interface when (a) t < 0, ( b )  t = 0, (c )  t > 0. 

Laplace’s equation, 

The symmetry condition at x = 0 is (where $ A  and 4~ are understood to be defined 
only in DA and DB respectively) 

V 2 4 ~  = 0 in DA,  V 2 4 B  = 0 in DB.  (3.3) 

4 ~ , ~  = 0, 4 ~ , ~  = 0, on x = 0. (3.4) 

(3.5) 

On the interface itself we have continuity of normal velocity, 

$A,y - 4 A , x Y x  = 4 B , y  - 4 B , x Y x ,  

the interface advection equation, 

+A,y = yt + 4 A , x Y x ,  (3.6) 
and continuity of normal stress, 

1 3 i 2  
7 ( P A  - p B ) & + ; p B  I V ~ B I ~ + P B + B , ~ - ; P A  I V ~ A I ~ - P A + A , ~  = - ~ y X x / ( l +  Y:) , (3.7) 

all for y = Y (x,t) .  Here PA,B are the densities of the two fluids and G is the surface 
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tension. In addition to these equations we impose uniform flow conditions at infinity 
so that 

Finally the contact angle condition that must be specified on the plate is 
~ A , B  + umy, Y -, umt, as x + co. (3.8) 

(3.9) Y, (0, t )  = -cot 8, (u,) ,  

where the velocity of the contact line is 

uc ( t )  = 4 A , y  (0, y (0, t ) )  . (3.10) 

This completes the definition of the boundary value problem. 
In order to obtain more tractable boundary conditions at infinity, we define 

4 A , B  = U ~ Y  + 4 > , B ,  y' = y - Umt, Y = Y - umt.  (3.11) 

By subtracting from the original variables the uniform flow behaviour at infinity, (3.8) 
become 

4>,B + 0, Y' + 0, as x + CO. (3.12) 
In terms of the starred variables, (3.3) to (3.6) and (3.9) remain the same, but (3.7) 
becomes 

(3.13) 

The problem is now formulated in a frame of reference where the fluid is initially 
stationary and the plate is moving. 

ipB lV4;l2 + PB+;,t  - ; P A  IV4:l2 -PA$:,t = -dy.x/(l + y.2)3'2. 

3.2. Dimensionless variables 
The only fluid properties that appear in the problem are density, p, and surface 
tension, 6. We also have the uniform flow velocity, um. From these, the only quantity 
that we can form with dimensions of length is o/pu:. We can think of this as the 
length scale on which surface tension balances inertia. In contrast to the dimensionless 
variables used in (2.1) and (2.2), there is no geometrical length scale in this problem, 
so we define 

( 3.14 a-c) 

(3.14 d,e) 

Note that we have arbitrarily chosen to use the density of fluid A in these definitions. 

(3.15) 

In terms of the new variables, (3.14), the boundary value problem becomes 

V2$* = 0 in DA,  V2$8 = 0 in DB,  

(3.16) 

(3.17) 

(3.18) 
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FIGURE 2. The dynamic contact angle for positive contact line velocities. 

with (3.17) to (3.19) applied at the interface, j = r (ji,?), and 

$A,B + 0, Y + 0, as ji + 00, 

Y, (0, t )  = -cot 8,. 

In these equations, the ratio of the fluid densities is p = p ~ / p ~ .  
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(3.20) 

(3.21) 

3.3. The dynamic contact angle 

In order to proceed, we need to make some assumptions about how the dynamic 
contact angle, 8,, varies with contact line speed, u,. Clearly, the exact functional form 
of 6, depends on the two fluids and the nature of the solid surface. However, there 
are some generic features that 6, is known to possess (see Dussan V. 1979). Firstly, 
static contact angle hysteresis is almost always observed. This means that there is 
a range of possible static contact angles, OR d 6,(0) d 8 A ,  where 6 R  is known as 
the receding contact angle, and 6A the advancing contact angle. Secondly, except 
for certain polymeric fluids, 8, is monotonic. In the context of this report we shall 
find that we are only interested in positive contact line velocities. We shall therefore 
assume that 8, is qualitatively of the form shown in figure 2. We also find it useful 
to define Om to be the limiting value of BC as u, + co, and u, /~ to be the contact line 
velocity at which 8, = n/2. Note that if 8, < 7112 or 8 A  > n/2, u,/2 does not exist. 
Finally, we define B0 to be the dynamic contact angle when the contact line velocity 
is urn, the uniform flow velocity. 

Now that we have defined the boundary value problem, our task is to determine 
how the fluidlfluid interface, described by r (ji, t )  , deforms for various values of the 
static advancing contact angle, OA,  the limiting, large-velocity contact angle, Om, and 
the density ratio, p. There is no analytical solution of this problem, and a numerical 
solution would not be easy to obtain. However, we can use asymptotic methods to 
analyse the large- and small-time solutions of the problem. These give us a good idea 
of the qualitative behaviour of the interface for all t > 0, which we shall describe in 
96. We shall also show, in 97, that these solutions can be directly related to the cases 
of large and small Weber number when we consider the deformation of an interface 
on a length scale appropriate for a local probe. 
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4. Large-time solution 
The boundary value problem defined by (3.15) to (3.21) contains no length or 

velocity scale. If the contact angle were independent of contact line velocity, this 
would mean that there must be a self-similar solution, valid for all t > 0. However, as 
t --+ co we expect that 6, tends to some constant value, and hence that this similarity 
solution will be the large-time limit of the solution to the boundary value problem. 
It is straightforward to show that the appropriate similarity variables are 
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In terms of these similarity variables, the dimensionless velocity of the moving contact 
line is U ,  = 1 - (2/3) t-'I39 (0). Therefore, as 7 t co, U ,  --+ 1. In terms of the physical 
variables, this means that the contact line velocity approaches the uniform flow 
velocity, urn, as t + co. As a consequence, 6, --+ 60 as t + co. Of course, this argument 
presupposes that 9 (0) is bounded for all values of 60. This will be investigated below. 

In terms of the similarity variables (4.1), the boundary value problem becomes 

V 2 @ ~  = 0 in DA,  V 2 @ ~  = 0 in D B ,  (4.2) 

subject to 
@A, t  = 0, @B,t = 0, on 5 = 0, (4.3) 

(4.6) 

@A,B + 0, 9 --+ 0, as < --+ 00, (4.7) 

1 A 2  312 
- TIV@AI~ - : @ A  + + ( t @ A , t  + 

with (4.4) to (4.6) applied at the interface, y = 9 (t), and 
= - j s t / ( l +  yt) , 

j [  (0) = -cot 60. (4.8) 
A numerical solution of this free boundary problem was calculated for the case 

p = 0, by Keller & Miksis (1983), and an asymptotic study was carried out by King 
(1991). Before we solve this boundary value problem numerically, it is instructive 
to consider a linearized solution of the problem, valid when the contact angle, 60, 
is close to n/2. This solution can be used to check the accuracy of the numerical 
solution of the full nonlinear problem, and gives us some insight into the dynamics 
of the interface. 

4.1. The linearized problem 
Consider the case where there is near orthogonal contact between the interface and 
the plate. We let B0 = n/2 + E ,  with e << 1, and pose asymptotic expansions in the 
form 

9 = E y + o ( f ) ,  

@A,B = d A , B  + o ( E )  . (4.9) 

(4.10) 

The leading-order linearized form of the boundary value problem is 

V 2 8 A  = 0 in D A ,  V 2 8 ~  = 0 in DB,  
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subject to 
&A,e = 0, &B,t = 0, on 5 = 0. (4.11) 

At leading order, the domains DA and D B  are the quarter-planes 0 d 5 < 00, 
-00 < y < 0 and 0 < 5 < CO, 0 < y < 00 respectively. The interface conditions, which 
are to be applied on q = 0 for 0 < 5 < co, are 

*A,q = &B,q, (4.12) 

(4.13) 

(4.14) 

&A,B + 0, j j  + 0, as 5 + 00, (4.15) 

jjt (0) = 1. (4.16) 

We note that both &A and &B satisfy Laplace’s equation, have no normal derivative 
on 5 = 0, and (4.12) shows that they have equal normal derivatives on q = 0. This 
shows that &A ( 5 , ~ )  = --&B (5, -q). We therefore define 8 = &B, and find that & 
satisfies 

v2& = o for o < 5 < 00, -CO < y < 0, (4.17) 
subject to 

@e = O ,  on 5 =0, (4.18) 

(4.19) 

&A,q = 3 (j - 59t) 9 

p { i & B  - $ < a B , t }  - 4 8 A  + $<&A,r = -&[, 
and 

- 
iijq = $ ( j j  - tjjt), on q = 0, 

and 

j je (0) = 1. (4.22) 
This boundary value problem can be solved using Mellin integral transforms. We shall 
show in $5 that a very similar boundary value problem can govern the leading-order 
behaviour of the small-time asymptotic solution. In order to derive a general solution 
that we can use for both of these problems, we rewrite the boundary value problem 
given by (4.17) to (4.22) in terms of polar coordinates ( r ,8 )7  a potential @ and an 
interface position y ,  as 

v2@ = o for o < r < CO, o < 8 < n/2, (4.23) 

subject to 
@o =0, on 8 =0, (4.24) 

@o = ?r  2 ( ry ,  -key), 

1 (1 + p )  {kl@ - k2rQr) = -y,,, 

on 8 = n/2, (4.25) 

(4.26) 

@ + O ,  y + O ,  asr+cO, (4.27) 
and 

Y r  (0) = 1. (4.28) 
For the case that we are interested in here, ko = 1, kl = 1 and k2 = 2. We can solve 
the general boundary value problem given by (4.23) to (4.28) using Mellin integral 

on 8 = n/2, 
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transforms, but first we must establish the behaviour of the solution close to and far 
from the contact line at r = 0. 

4.2. Solution for r << 1 
For r << 1 we pose coordinate expansions in the form 

@ = A + rB (0) + 0 ( r 2 )  , y = a0 + alr + a2r2 + 0 ( r 3 )  . (4.29) 

By substituting these expansions into (4.23) to (4.26) we find that B = +koao cos 0 and 
A = -6a2/kl(l + p). Hence all of the differential equations and boundary conditions 
can be satisfied by the above expansions, and we would expect this asymptotic 
structure to emerge from the integral transform solution. 

4.3. Solution for r >> 1 
For r >> 1 we pose coordinate expansions of the form 

C cos 0 D cos 40 E 
r +...+ r4 +..., y = -+... r2 . @ = -  (4.30) 

Laplace's equation (4.23) is clearly satisfied by these multipole solutions, along 
with (4.24). On substituting these expansions into (4.25) and (4.26) we find that 
C = $(ko+2)E and D = -18E/(kl +4k2)(1 +p) .  Again we conclude that all of 
the differential equations and boundary conditions can be satisfied by the above 
expansions. We therefore expect this asymptotic structure to appear in the integral 
transform solution. It is worth noting that an oscillatory term may appear in the 
above expansions but that it is not dominant. 

4.4. The integral transform solution 

@* ( p ,  0) = 1" rP-' @ ( r ,  0) dr, (4.31~) 

y' ( p )  = 1" rP-'y (Y)  dr. (4.31b) 

These transforms generally exist, and are analytic functions in some strip of the 
complex p-plane. The behaviour of @ and y for small and large r shows that the 
transform of @ is analytic in 0 < Re(p) < 1, whilst the transform of y is analytic in 
0 < Re(p) < 2. The transformed version of Laplace's equation in each region is a 
simple ordinary differential equation with solution that satisfies (4.24), 

@* = B ( ~ ) c o s ~ O .  (4.32) 

We define the Mellin transforms of the potential and interface as 

The kinematic condition (4.25) leads to 

( P  - 1) B ( P  - 1) sin {. (P - 1) /2} = 5 (ko +ply' (PI  * 

? ( l + P ) ( k l  + k z P ) B ( P ) = - ( P - - ) ( P - - ) Y ( P - - ) .  

(4.33) 

(4.34) 

A Mellin transform of (4.26) gives the relationship 
1 

Some simple algebraic manipulation shows that a single equation for B can be found 
in the form 

(4.35) 
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The solution to this functional difference equation is 

where 
b ( p )  = -b ( p  - 3 ) ,  
b ( p )  = b ( p  - 3 ) ,  

for k2 > 0, 
for k2 < 0. 

With the structure of B ( p )  known we can work backwards and find that 

(4.37) 

p/3-1/3 ( p  - 1)  r ( i p  + i) r ( i p )  r ( ; p  - f) cos ( ;pn)  b ( p  - 1)  
y =-- 

(4.39) 
It now remains to choose b ( p )  so that the transforms are analytic in the appropriate 
strip of the p-plane and also have the correct behaviour as r --+ 0 and r + co. We 
firstly note that as IpI + co (with p = p1 +ip2), y' and @* are of 0 (b(p)e*"p2/3/p') as 
p2 4 +a, with p1 fixed, where a is a positive constant. In order to ensure convergence 
of the transform integrals we need b ( p )  to decay at least as fast as eTnP2I3. 

If we consider the singularity structure of the transforms in the half-plane Re(p) < 0, 
with ko = 1, kl = 1 and k2 = 2, neglecting for the moment any singularities in b ( p ) ,  
we see that 

* 2 '{ 2lk2l(l+P) 27 } a r ( i p + ~ k o ) r ( 3 p + ( 2 k 2 + k 1 ) / 3 k 2 )  

(4.40) 

To obtain the correct structure for y as r -+ 0, y' must have a simple pole at p = -1. 
Hence b ( p )  must have a simple pole at p = -2. Notice that this forces b ( p )  to have 
another simple pole at p = 1. However, the resulting poles at p = 1 in the expression 
for @* and p = 2 in the expression for y' are allowable, since @* is analytic only in 
0 < Re(p) < 1 and y' only in 0 < Re(p) < 2. It is now apparent from (4.37) that 
b ( p )  is an anti-periodic function, with period 3, and also that b ( p )  has a simple pole 
at p = -2 and exponential decay at infinity. Therefore, b ( p )  is of the form 

y' has simple poles at p = 0, -2, -3,. . . , but no pole at p = -1, 

@* has simple poles at p = 0, -1, -3,. . . , but no pole at p = -2. 

(4.41) 

where P ( p )  is a strictly periodic function satisfying P ( p )  = P ( p  - 3). Since y' is 
analytic in 0 < Re ( p )  < 2, P ( p  - 1) must also be analytic there. If P ( p  - 1) had a 
pole in -1 < Re(p) < 0, say at p = -p with 0 < p < 1, then we would find that 

(4.42) 

The presence of the r p  term in this expansion violates the contact angle and curvature 
conditions at the origin. This shows that P ( p )  must be analytic in -1 < Re ( p )  < 2, 
and therefore, from its periodicity, analytic in the whole of the complex p-plane. It 
must also be bounded for large IpI if the transform integrals are to converge. Hence, 
by Liouville's Theorem, it is a constant, and we write P ( p )  = P. 

In order to find the value of P we need to apply (4.28). If we close the inversion con- 
tour of the Mellin inversion integral by a large semi-circle lying in -co < Re(p) < 0, 

y N y (0) + urp + r ,  as r + 0. 
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a process that is valid due to the decay of the inverse transform on the semi-circle, 
we find that 

Y (r) = ~ 

y' ( p )  rPPdp = ZpGo Residues at poles of y' ( p )  r-p, (4.43) 

where c is a real constant with 0 < c < 2. A simple residue calculation at the poles 
p = 0, -1 shows that 

2ni Jc+im c-ioo 

for r << 1. Applying y ,  (0) = 1 gives p = $ (27/4(1 + p)}2/3 r (i) /I- (-$) r (-i) and 
hence y (0) = 8 {27/4 ( 1  + p) }  1'3 I- (;) /I' (- i) r (I) .  If the gamma functions are 
replaced by their numerical values we find that 

y (0) = -0.852 ( 1  + (4.45) 

Now, using the original variables, the solution for j j  is given by 

with 0 < c < 2. Although this form is closed, there is no simple expression for it 
in terms of elementary functions, and the interfacial deformation must be computed 
from (4.46). This was done numerically using a composite trapezium rule, evaluating 
the gamma functions using the routine given in Press et al. (1986). Graphs of j j  as 
a function of <, for p = 0.05, 0.8, 1.2 and 20 are illustrated in figure 3. A typical 
density ratio for oil and water is p = 0.8 or 1.2. The ratios p = 0.05 and 20 have been 
included to show the effect of a greater density contrast. We note that the form of the 
solution for p = p1 > 1 is simply a scaled version of the solution for p = l/pl < 1, 
with the scaling given by 

j j ( 5 ; p )  = p-lI3jj (~- l /~(z;p- - l ) ,  for all p 2 0. (4.47) 

Figure 3 shows that a decaying capillary wave propagates along the interface. In 
the Appendix, we show that the wavelength decays as tP2 and the amplitude as 5-7/2, 
as < 4 co, and determine the asymptotic behaviour of j j  in this limit. Remember 
that 1: and j j  are scaled variables, and must each be multiplied by (00 - n/2) i2l3 to 
recover the unscaled dimensionless variables. In terms of the dimensionless variables, 
although the amplitude of the wave decays as Z -, co, the amplitude grows as t 
increases at any fixed point 3 >> 1. The plate exerts a point force on the fluid at 
the contact line in order to maintain the required contact angle. This force generates 
waves that propagate away from the force with an amplitude that decays, even though 
there is no dissipative mechanism present (see, for example, Jeffreys & Jeffreys 1962). 
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FIGURE 3. Graphs of the solution (4.46) for various values of p. 

In terms of the original physical variables, the position of the moving contact line 
is given by 

If 80 > n/2 the contact line lags behind the far-field interface, and vice versa. Note 
that if 80 = n/2, the interface remains undeformed and normal to the plate, since this 
simple solution satisfies the contact angle condition (4.16). 

4.5. The full nonlinear problem 
As we noted earlier, if the contact angle, 80, is not close to n/2,  we must resort 
to numerical methods to solve the boundary value problem given by (4.2) to (4.8). 
We have developed an efficient numerical solution method for the boundary value 
problem given by (4.2) to (4.8), based on Green’s integral representation for harmonic 
functions. 

In two dimensions, the harmonic function, QA, satisfies 

where aDA is the boundary of the domain, DA, in which @A is harmonic, nA is the 
outward unit normal, Y, yo E aDA, and ds is an element of arc length. The equivalent 
equation holds for GB.  For fluid A, the outward unit normal to the domain DA is 

n = (-9 ( 5 )  9 1) /(I + (9’ ( 5 ) ) 2 ) 1 / 2 .  (4.50) 

The outward unit normal to the domain DB, occupied by the fluid B, has the opposite 
sign. We can eliminate a@,/an from (4.49) by using the kinematic condition (4.5) in 
the form 

aQiA = (59’ ( 5 )  - 9 (t)} /(I  + (9’ (5))2)1/2. (4.51) 

Using the integral representation given by (4.49) we can now formulate the problem 
in terms of the values of the potentials @A and @B on the interface alone, which we 

an 
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shall denote by 

VA,B ( 5 )  @A,B (t,9 ( 5 ) ) .  (4.52) 
After some simple algebraic manipulation exploiting the symmetry of the flow across 
5 = 0, we can rewrite (4.49) as 

J. Billingham and A. C. King 

(4.53) 

A similar equation holds for Y B ,  with changes of sign to account for the direction of 
the outward normal to the region DB. 

We must now rewrite (4.6) in terms of I ~ A  and wB,  using expressions for @A,B,t and 
@ A , B , ~  in terms of derivatives of the potential at the interface. By definition, 

wx (t) = @A,[ + @A,q9’ (5) 3 (4.54) 

(4.55) 

(4.56) 

We now define a mesh of discrete points t = ti = ih, for i = 0, l , . . . , n ,  with 
3 tpB (ti) and j i  E 9 (&). The 

which, along with (4.5), leads to 

@A,t = [$9’(t>{t9’<t)-P(t)} +wx(<)]  / [ I +  {E’(<)}2] 7 

@A,? = [9’ ( 5 )  wx ( 5 )  - $9’ (t) {tj’ ( 5 )  - 9 (t)>] / [ 1 + (9’ (O}’] . 
and 

Similar expressions can be found for @ ~ , t  and @B,?. 

corresponding values of the unknowns, tp i  = wA (ti), 
discretized form of (4.5) is 

312 
- ;y; + f +pi@;,,) - 4 { (@i,*)2 + (@L,J} = -#/ { 1 + (9$} , (4.57) 

for i = 1,. . . , n- 1. After substituting (4.55) and (4.56) into (4.57), all derivatives can be 
approximated by central differences to 0 (h2) accuracy. We can discretize the integral 
equations satisfied by t p ~  and Y)B (given by (4.53) for Y A  and a similar equation for 
Y ) B )  by truncating the infinite range at nh and using a composite trapezium rule. This 
gives 0 (h2) accuracy. The equation for I& takes the form 

(4.58) 

for i = 1,. . . , n - 1. In this discretized equation, wj are the weights appropriate to the 
trapezium rule, 

1 ”  1 ”  
ivV.Kij - -h C wj (tj9; - Y j )  Lij - M (h7 Ei) 

j=Oj#i 
IT& = Z h C w .  1=0 6 
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and 

Lij = In { ( t j  - + ( j j  -Pi)’} + In {(ti + + ( j j  - j i ) 2 } .  (4.60) 

In order to explain why the quantity M ( h , j i )  appears in (4.58) we note that the 
integral in (4.53) that involves the quantity In [(< - is singular 
as 5 + 50. By an analytic integration over the range [ti-l, we find that, in order 
to be consistent with the error in the trapezoidal discretization, we require that 

+ ( 9  (5) - 9 

M ( h , j i ) =  i ( & j i - j i )  [2(hlnh-h)+hln{1+(9j)2}]  (4.61) 

We now have 3 (n  - 1) equations and 3 ( n  + 1) unknowns. The boundary conditions 

(4.62) 

that close the discretized system are 

I& = I& = j n  = 0, 

and 
j;, = -cot 00, Ipi,$ (0) = - ; j o  cot 60. (4.63) 

The derivatives that arise in (4.63) can be approximated by forward differencing, 
again accurate to 0 (h2).  The result of this discretization is a system of 3 ( n  + 1) 
nonlinear algebraic equations. These were solved using the NAG routine CO5NBF. 
This uses a combination of steepest descents and Newtonian iterations. 

For contact angles close to n/2, we use an initial estimate of the solution for this 
iterative scheme with all of the discretized values equal to zero. The resulting solution 
reproduces the linearized solution derived in $4.1 to within the correct accuracy. For 
contact angles further from n/2, this linearized solution can be used as the initial 
estimate. For contact angles more than about n/4 from the normal we used a 
continuation method, with the solution computed for a nearby contact angle used as 
the initial estimate. 

Some typical solutions are shown in figure 4 for p = 0.05, and in figure 5 for 
p = 0.8. As we noted above, the solution for p > 1 can be obtained using the 
scaling given by (4.47), in this case for 9. For these numerical solutions we used a 
grid spacing, h, of 0.05, with 150 grid points, so that the solution was computed for 
0 < 5 < 7.5. We were able to obtain solutions unless the contact angle was close 
to zero or n. The value of p made little difference to the range of contact angles 
for which we could calculate solutions, roughly 0.27 < 60 < 2.87. The difficulty is 
that, as the contact angle becomes close to zero or n, so that the interface becomes 
tangential to the plate, the value of y changes rapidly over a thin region close to the 
plate. Since the grid is uniform in the 5-direction, the number of grid points in this 
region of rapid change becomes insufficient to allow the solution to be approximated 
accurately. By decreasing the grid spacing we can slightly extend the range of contact 
angles for which we can compute solutions, but at the expense of a large increase in 
computing time. The law of diminishing returns seems to operate, and further grid 
refinement is not a viable method of examining the full range of possible contact 
angles. 

It is clear that a non-uniform grid, with a high concentration of grid points close to 
the plate is needed to compute solutions with high or low contact angle. Such a grid 
could be generated adaptively, based on the form of the solution at a nearby contact 
angle where the solution can be computed. We have not yet pursued this further, 
since a uniform grid is sufficient to cover the range of contact angles encountered so 
far during our experiments with local probes. 
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FIGURE 5. Graphs of the interface when t >> 1 for various values of 00 with p = 0.8. 

Clearly, the contact line lies further from the point q = 0 the closer Oo is to zero 
or n. As we shall see in 96, we would like to know whether 9 (0) becomes unbounded 
or tends to a finite limit as 80 --+ 0 and 00 -, n. The behaviour of j ( 0 )  is shown in 
figure 6 .  Firstly, we can certainly say that, for fairly small and large contact angles (up 
to Oo = 0.27 or 2.87 radians, equivalently 15" or 165") 9 (0) is close to unity. Secondly, 
the trend indicated by figure 6 suggests that j ( 0 )  remains bounded as 00 -, 0 and 
eo -, n. 

5. Small-time solution 
In the previous section we analysed the natural similarity solution to the boundary 

value problem defined by (3.15) to (3.21), and found that it represents the long-time 
limit of the full solution of the problem. It is natural to consider whether this 
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FIGURE 6. Graphs of the position of the contact line for t >> 1, for p = 0.05 and p = 0.8. The 
analytical solution of the linearized problem for 00 close to 7c/2 is also shown in each case. 

60 

similarity solution can represent the solution of the boundary value problem at small 
times, t << 1. 

We found above that the velocity of the contact line in the similarity solution is 
zi, = 1 - (2/3) T-1/3j (0). Clearly, if t << 1, the fluid velocity for X and ji of 0 (?'I3) is 
singular, of 0 (t-'l3)>. This suggests that there will be further asymptotic regions for 
t << 1, where viscosity becomes important. We shall not consider this further here, 
but simply note that this singularity in the velocity field as 7 + 0 does not prevent the 
inviscid incompressible similarity solution from being valid at small times. However, 
we shall see below that the contact angle condition (4.8) means that the similarity 
solution cannot always represent the small-time solution. There are three cases. 

5.1. Case I: 8, < 71/2 
As we have seen, the contact line velocity is large at small times in the similarity 
solution. This means that, if this solution is to be valid, it must satisfy 95 (0) = 
-cot 8,, where 8, is the limiting value of 8, (0,) as Ei, --+ 00. If 8, < z/2, we have 
seen in $4 that the contact line has j c  > 0. This means that, for t << 1, the contact 
line moves rapidly along the plate, with j c  = 0 (t'//'), and the similarity solution with 
8, = 8, is the leading-order small-time solution. 

Note that it is mathematically possible, although physically unlikely, that 8, = 0, 
and hence that 8, = 0 for all U ,  2 0, since we assume that 8, is monotonic. In this 
case, the form of the small-time solution is crucially dependent on whether or not 
j (0) + 00 as 8, + 0, as discussed in $4.5. If, as seems likely, 9 (0) remains bounded, 
the small-time position of the contact line is given by 

y, (2) - j (0;  8, = 0)  

However, if this is not the case and j ( 0 )  --+ co as 8, + 0, the contact line must 
immediately move to infinity at 7 = O+ and the similarity solution (which now does 
not include a contact line, since it has moved instantaneously to infinity) is valid for 
all t > 0. 

If 8, > n/2, we have found that ji, < 0. This is not possible for t << 1, since the 
contact line cannot leave the plate and retain the characteristics of a contact line. 
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Clearly, the small-time solution must have some other asymptotic structure in this 
case. 

5.2. Case I I :  8, > 7112, e A  < n/2 
By looking for scaled variables that lead to a leading-order balance of terms in (3.15) 
to (3.21), we find that appropriate definitions are 

The factors of ( f n / 2  - 1) above, and the slightly unusual definition of x are included 
in order to reduce the boundary conditions to a convenient form, scaling i i n / 2  out 
of the leading-order problem, as we shall see below. The coordinates X and p are 
scaled with T2i3, as they were in the similarity scaling (4.1), but now 6 also scales with 
T 2 j 3 ,  so that the fluid velocity remains of 0(1), and the position of the interface, P, 
scales with 2, so that it remains close to both the leading edge of the plate and its 
far-field position, y = 7. Physically, this means that the velocity of the contact line 
remains bounded when the interface meets the plate at time 7 = 0, since the form of 
the dynamic contact angle as a function of the contact line velocity allows the contact 
line initially to remain close to the leading-edge of the plate. 

In terms of the scaled variables (5.2), at leading order we obtain a pair of coupled 
boundary value problem defined on two quarter-planes. Using identical arguments 
to those given in $4.1 we can reduce this to a single boundary value problem on a 
quarter-plane in terms of 3 s 3 B  ( 5 , q )  = - 3 A  ( 5 ,  -q), given by 

v23 = o for 0 < 5 < co, -m < y < 0, (5.3) 

subject to 
3t =0,  on < =0, (5.4) 

3q = x - i<xr, on q = 0, (5 -5 )  

(5.6) 

3+O, X + O ,  a s < + m .  (5.7) 

+ (1  + p )  { 3 + 53t) = -xtt, on q = 0, 
and 

The contact angle boundary condition (3.21) becomes pR(0) << 1 as 7 + 0. This 
means that the contact angle must be 7112 at leading order. For this to be possible, 
the contact line must move with velocity i i n / 2 .  Taking into account the factors of 
( z i n / 2  - 1) in the definition (5.2) of x, this means that the contact angle boundary 
condition is equivalent to 

Before we study the boundary value problem (5.3) to (5.8) we consider the last of the 
three cases. 

5.3. Case I I I :  8, > 7112, e A  > 7112 
In this case, the only contact line velocity that allows that contact angle to be 7112 at 
leading order, and also keeps the contact line on the plate is zi, = 0. In other words the 
contact line hangs up on the leading edge of the plate. The appropriate leading-order 
boundary value problem that we must solve is again given by (5.3) to (5.8), but with 

= 0 in the definitions (5.2) of the scaled variables. The behaviour of the dynamic 
contact angle in each of the three different cases is illustrated in figure 7. 

x(0)  = 1. ( 5 8 )  
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FIGURE 7. The qualitative form of the dynamic contact angle in the three different cases that 
determine the form of the small-time solution. 

It now remains to solve the linear boundary value problem given by (5.3) to (5.8). 
This has the same form as the boundary value problem (4.23) to (4.27), but with 
ko = 3/2, kl  = 2 and k2 = -2, and the boundary condition at the contact line 

y ( 0 )  = 1. (5.9) 

For this case, the singularity structure of the transforms is as given by (4.40), and 
similar arguments show that y' must have a simple pole at p = -1. However, in this 
case, neglecting the singularities of b ( p )  for the moment, y' has a zero at p = -1. 
This shows that b ( p )  must have a double pole at p = -2. A suitable function is 

(5.10) 

since (4.37) shows that b ( p )  must be strictly periodic in this case. The same arguments 
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FIGURE 8. Graphs of the solution (5.11) for various values of p. 

as those given above show that B ( p )  must be constant. Applying the contact line 
condition (5.9), y(0) = 1, shows that /3 = - { & ~ ~ / ~ r ( + ) }  {27/2(1 + ~ ) } l / ~ ,  and 
hence, using the original variables, that 

with 0 < c < 2. Although this form is closed, no simple expression for it in 
terms of elementary functions can be found and the interfacial deformation must be 
computed numerically from (5.11). This was done by using a composite trapezium 
rule, evaluating the gamma functions using the routine given in Press et al. (1986). 
Graphs of x as a function of 5, for p = 0.05, 0.8, 1.25 and 20, are shown in figure 8. 
These solutions should be compared to those shown in figure 3, which are valid both 
for t >> 1 and, in case I, for 7 << 1. The small-time solutions shown in figure 8 are not 
oscillatory, and have just a single turning point. In case I, the large impulsive change 
in velocity at 7 = 0 leads to the immediate formation of capillary waves. However, in 
cases I1 and 111, the capillary waves that have developed when 7 >> 1 must be formed 
later, when t = 0 (1). 

6. The qualitative behaviour of the solution for t > 0 
We are now in a position to speculate about the form of the solution of the 

initial/boundary value problem defined by (3.15) to (3.21) by considering the form of 
the small- and large-time solutions derived above. We must consider the three cases, 
defined in $5, that lead to qualitatively different behaviour at small times. 

6.1. Case I: em < n/2 
In this case, for 7 << 1 the solution takes the form of the similarity solution governed 
by (4.2) to (4.8), and illustrated in figures 4 and 5, but with contact angle 8,, the 
limit of 8, as U, -+ co. We shall not consider the physically unrealistic case, 8, _= 0. 
For t >> 1, the solution also takes the form of this similarity solution, but with 
8, = O0 < 8,. Figure 9 shows the likely qualitative form of the solution for O0 = 0.47 
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and 0, = 1.07. This has been constructed by taking the numerically calculated 
solutions illustrated in figure 4, scaling them appropriately with 7, assuming that the 
solution retains the similarity form and that Oc decreases monotonically from 0, to 
00. 

6.2. Case II: 0, > 1~12 ,  OA < n/2 
In this case, for t  << 1 the solution takes the form of the asymptotic solution governed 
by (5.3) to (5.8), and illustrated in figure 8. As in all three cases, for t >> 1, the 
solution has the similarity form, with 8, = 00. Figure 10 shows the likely qualitative 
form of the solution for = 0.5 and do = 2.27. This has been constructed by taking 
the numerically calculated small-time solutions illustrated in figure 8, scaling them 
appropriately with T ,  assuming that the solution retains this asymptotic form and 0, 
decreases monotonically for some finite time. We then use the similarity solutions 
illustrated in figure 4 in a similar way for larger times. Note that oscillations on the 
interface are not present in the leading-order solution for small times, but do appear 
in the large-time solution, which suggests that they become significant at some O( 1) 
time. 

6.3. Case III: 0, > 7112, OA > 1 ~ 1 2  
In this case, for ? << 1 the contact line hangs up on the leading edge of the plate, 
with the asymptotic solution governed by (5.3) to (5.8), and illustrated in figure 8. As 
T increases, the contact angle at the fixed contact line must increase, until it exceeds 
the static advancing contact angle, OA > n/2. The contact line can then move along 
the plate. We would expect this to happen when ? is of 0 (1). In terms of the 
dimensionless variables, the interface hangs up on the leading edge of the plate for a 
time proportional to alpu;. As ? + co, 0, + 00, and the solution takes the large-time 
similarity form. 

If, as is physically possible, do = I T ,  it becomes crucial to know whether the position 
of the contact line in the similarity solution, j ( 0 )  remains bounded as 0, + IT. If it 
does, then the contact angle reaches n in a finite time, and the contact line moves 
along the plate with 0, = IT. If not, then the contact line remains at the leading edge 



346 J. Billingham and A. C. King 

- 
Y 

0 1  I 
0 10 20 30 40 50 

X 
- 

FIGURE 10. Graphs of the qualitative form of the solution for iini2 = 0.5 and 60 = 2.27 at various 
times t = 0.1, 0.5, 1, 2.5, 5, 7.5, 10, 12.5, 15. The first two curves use the small-time solution, the 
next seven use the large-time solution, five with 0, = 1.67, 1.87, 2.07, 2.27, and the last two also 
with 6, = 2.27. (Case 11.) 
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FIGURE 11. Graphs of the qualitative form of the solution for $0 = 2.87 at various times 2. The 
contact line leaves the leading edge of the plate at around 2 = 5. (Case 111.) 

- 

of the plate, with BC + .n as t + 00. It is worth noting however that, for the solid 
materials that we have so far considered for use in manufacturing local probes, the 
fluid/fluid/probe contact angle has never been less than 10" or greater than 170", so, 
at least for the surfaces used so far, this question has not arisen. 

Figure 11 shows the likely qualitative form of the solution for 8, = 2.87. This has 
been constructed in a rather more ad hoc manner than in figures 9 and 10, by taking 
the numerically calculated solutions illustrated in figures 4 and 8, and scaling them 
with 1 so that the solution has the correct qualitative behaviour. 
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FIGURE 12. (a) A typical shape for a local probe, see Serizawa et al. 1974. (b) The equivalent of the 

length l is marked on the flat plate. 

7. Implications for local probes 
An essential difference between the model problem that we have studied here and 

the flow around a local probe is that the former has no geometrical length scale 
associated with it, whilst the latter certainly has. As we have seen, this means that, 
apart from the ratio of the fluid densities, the material properties can be scaled out 
of our model problem by using a length scale on which inertia balances surface 
tension. In order to relate this qualitatively and, in terms of orders of magnitude, 
quantitatively to the behaviour of fluid/fluid interfaces on the length scale of a local 
probe, consider a point at a distance 1 from the leading edge of the flat plate. This 
distance corresponds to that from the tip of a local probe to its sensing area. A 
typical probe shape is illustrated in figure 12 (see, for example, Serizawa et al. 1974). 

In terms of the dimensionless variables defined by (3.14), t = pAu$l/a. As we can 
see from the definition given in table 2, the dimensionless length, 7, is equivalent to a 
Weber number and indicates the strength of inertial relative to capillary forces. We 
have already seen in $2 (since 1 is of the same order of magnitude as the diameter of 
the probe, d )  that the Weber number, We, is moderately small at low fluid velocities 
and large at high fluid velocities. In other words, at least qualitatively, at low fluid 
velocities f is moderately small, whilst at high velocities f >> 1. Moreover, if we want 
to know how much an interface has deformed when its far-field position reaches 
p = f, we can consider the solution of the model problem when t = f at moderately 
small values of time, t, or for t >> 1, respectively. 

From the small-time solution that we developed in $5, we can see that the position 
of the moving contact line depends only on the velocity, u,p, that maintains the 
contact angle close to 71/2. There may be no such velocity, in which case we have 
seen that the contact line moves rapidly along the plate with an initially singular 
velocity of O(?-1/3). If there is a velocity, uz/2, that maintains the contact angle close 
to n/2, it can be greater than urn, less than urn, or zero, in which case the interface 
hangs up at the leading edge of the plate. These different possibilities are illustrated 
in figure 13(a-d). For the local probe, this suggests that the time at which the contact 
line passes the length 1 is independent of the far-field velocity of the interface. The 
speed of the contact line is dominated by capillary effects, as we might expect for 
low Weber number, We. Note that, although in this case the natural length scale on 
which surface tension balances inertia is longer than the geometrical length scale of 
the probe (f small), we are considering the form of the small-time solution of the 
model problem, in particular when the deformation of the interface is much smaller 
than the natural length scale. We therefore expect our conclusions to be qualitatively 
correct . 
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FIGURE 13. Typical shapes of the interface, firstly when 1 << 1 in (a) case I, (b)  case 11, U,/Z > 1, 
( c )  case 11, Q n / 2  < 1, ( d )  case 111, and secondly when 7 >> 1, labelled ( e ) .  

We studied the large-time solution of the model problem in $4. At leading order, 
the contact line moves at the same speed as the interface far from the plate, but leads 
or lags the interface, depending on whether the dynamic contact angle appropriate to 
this speed is less than or greater than 71/2, by an amount of O(t2l3) .  When 1 >> 1 this 
means that the distance, L, by which the contact line leads or lags far-field position 
of the interface is only a small proportion of 1, with L/1 = L/i = 0 F-1/3). This is 
illustrated in figure 13(e). It is worth noting that, although We, and hence 1 can be as 
high as 160 for production logging applications, 160-'/3 = 0.18 is not very small, so 
that, even at the highest velocity likely to be encountered, the contact line can lead 
or lag the far-field interface by as much as 20%. 

8. Conclusions 
In this paper we have examined large- and small-time solutions of a model problem 

using either Mellin transforms or a boundary integral method. Starting from the 
closed form of the large-time asymptotic solution, we have been able to determine 
the phase and amplitude of the far-field capillary waves that are generated when the 
contact angle is close to n/2. All of these solutions have given us insight into the 
factors that control the motion of a contact line over a solid surface for a range of 
physical parameter values relevant to the interaction of a fluid/fluid interface with a 
local probe. 

The form of the dynamic contact angle for the two fluids and the surface of the 
probe, as a function of contact line velocity, is crucial in determining how an interface 
deforms as it meets and moves over the surface. Depending on this, the three-phase 
contact line may, at one extreme, hang up on the tip of the probe for some time or, 
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at the other extreme, move rapidly along its surface. The size of the dimensionless 
Weber number, which measures the relative strength of inertial and capillary forces, 
also affects the size of the deformation. 

We would like to thank Anthony Pearson for the encouragement that he has given 
us. 

Appendix. The solution of the linearized problem as 5 + co 
Here we are concerned with finding the asymptotic behaviour of (4.46), 

in the limit < + co, where R = 4(1 + p )  t3/27 and 0 < c < 2. This will tell us 'how 
the interface deforms far from the contact line. Some elementary manipulations of 
the trigonometric functions show that 

where 

and 1/3 < d < 1. In order to determine the asymptotic behaviour of K as R 4 00, 
we note that the factor of l /cos (ins) means that the integrand in (A4) decays more 
rapidly than the integrand in (A 1). This allows us to close the contour of integration 
to the right of the pole at s = 1, and, on applying the residue theorem, show that 

We now turn our attention to J, and firstly note that 

(J- + J+), (A 6) 
1 - dJ  

dR 2R 
- - -- 

where 

Now, by using results given by Gradshteyn & Ryzhik (1980, p. 659, equation 17 and 
p. 1062, equation 9.235.1), we find that 

On substituting this back into (A6), and using the fact that K-1/3 (z) - e-Z(n/2z)'/2 
as z + co, we find that dJ/dR - - cos ( R  + n/4) /R3l2 as R + co, and hence that 

sin ( R  + in) 
~ 3 1 2  

, as R + m .  J - -  
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FIGURE 14. The behaviour of 9 ( 5 )  as 5 --$ co, for p = 0.8. The numerical evaluation of (A 1) is 
solid line, whilst the dashed line is 9 = l /n  (1 + p )  t2. 
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We can now substitute (A 5) and (A 9) into (A 2), and arrive at 

3/2 sin (4 (1 + p )  C3/27 + n/4) 
57/2 

9 ( 5 )  - + , 
1 

as < + co. (A 10) 

The position of the interface decays to the far-field position as <-2, whilst the 
amplitude of the waves on the interface decays more rapidly, as 5-7/2 ,  with a 
wavelength that decays as tP2. Equation (A 10) has the same functional form as that 
obtained by Keller & Miksis (1983) for the free surface case, p = 0. 

As discussed in $4.1, the integral in (A 1)  can be evaluated numerically, and 
is illustrated for a particular case, p = 0.8, in figure 14, along with the leading- 
order asymptotic behaviour calculated above, 9 - 1/n(1 + p ) t 2 .  These are in good 
agreement, although the oscillations shown in figure 14 are a numerical artifact. The 
more rapid oscillations in the far-field solution could, in principle, be resolved by a 
far more accurate numerical evaluation of the integral. We have not attempted this 
here, since the fine-scale oscillatory features of the solution are very hard to resolve 
numerically. The asymptotic expression (A 10) is clearly the most appropriate way to 
describe the solution for 5 >> 1. 
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